
NASA Contractor Report 194943

ICASE Report No. 94-54

/

/
!

f

IC S
DIRECTIONS IN PARALLEL PROGRAMMING:

HPF, SHARED VIRTUAL MEMORY AND

OBJECT PARALLELISM IN pC++

Francois Bodin

Thierry Priol

Piyush Mehrotra
Dennis Gannon

(NASA-CR-194943) DIRECTIONS IN

PARALLEL PROGRAMMING: HPF, SHARED
VIRTUAL MEMORY AND OBJECT

PARALLELISM IN pC** Final Report
(ICASE) 40 p

N95-10879

Unclas

Hl/61 0019856

Contact NAS1-19480
June 1994

Institute for Computer Applications in Science and Engineering

NASA Langley Research Center

Hampton, VA 23681-0001

Operated by Universities Space Research Association

Directions in Parallel Programming: HPF, Shared Virtual Memory

and Object Parallelism in pC++*

Franf, ois Bodin _ Thierry Priol _ Piyush Mehrotra b Dennis Gannon c

_Irisa, University of Rennes, France

blCASE, MS 132C, NASA Langley Research Center, Hampton VA. 23681 USA

CDepartment of Computer Science & CICA Indiana University, Bloomington, Indiana, U.S.A.

Abstract

Fortran and C++ are the dominant programming languages used in scientific computation.

C,onsequently, extensions to these languages are the most popular for programming massively

parallel computers. We discuss two such approaches to parallel Fortran and one approach to

C++. The High Performance Fortran Forum has designed HPF with the intent of supporting

data parallelism on Fortran 90 applications. HPF works by asking the user to help the compiler

distribute and align the data structures with the distributed memory modules in the system.
Fortran-S takes a different approach in which the data distribution is managed by the operating

system and the user provides annotations to indicate parallel control regions. In the case of

C++, we look at pC++ which is based on a concurrent aggregate parallel model.

*This research is supported by DARPA under contract AF 30602-92-C-0135 from Rome Labs, National Science
Foundation Office of Advanced Scientific (:omputing under grant ASC-9111616 and Esprit BRA APPARC and by
the National Aeronautics and Space Administration under NASA contract NAS1-19480 while one of the authors was
in residence at ICASE, Mail Stop 132(i:, NASA Langley Research Center, Hampton, VA 23681.

1 Introduction

Exploiting the full potential of parallel architectures requires a cooperative effort between the user

and the language system. There is a clear trade-off between the amount of information the user

has to provide and the amount of effort the compiler has to expend to generate optimM parallel

code. At one end of the spectrum are low-level languages where the user has full control and has

to provide all the details while the compiler effort is minimal. At the other end of the spectrum is

sequential languages where the compiler has the full responsibility for extracting the parallelism.

Clearly, there are advantages and disadvantages to both approaches.

Explicit-tasking Languages

Current programming environments for parallel machines follow the first approach providing low-

level constructs such as message-passing primitives as their principal language constructs. In such

programming environments, an algorithm is specified as a set of sequential processes which exe-

cute concurrently, synchronizing and sharing data explicitly via messages. Since such environments

directly reflect the underlying hardware, such an explicit-tasking approach allows the user to effec-

tively exploit the full potential of the machine.

However, for data parallel algorithms, as one typically finds in scientific programming, such

environments have proven quite awkward to use. The basic issue is that programmers tend to

think in terms of synchronous manipulation of distributed data structures, such as grids, matrices,

and so forth, while the languages available provide no corresponding language constructs. The

hardware support for most current architectures is such that locality of data is critical for good

performance. Thus, the programmer must decompose each data structure into a collection of

pieces, with each piece "owned" by a single processor. All interactions between different parts of

the data structure must then be explicitly specified using the low-level data sharing constructs such

as message-passing statements supported by the language.

Decomposing all data structures in this way, and specifying communication explicitly, leads to

programs which can be extraordinarily complicated. Experience has shown that message-passing

versions of algorithms can be five to ten times longer than the sequential version. This code expan-

sion hides the original algorithm among the details of low-level communications. Programs written

in low-level languages also tend to be highly inflexible, since the partitioning of the data struc-

tures across the processors must be incorporated in all parts of the program. Each operation on a

distril)uted data structure turns into a sequence of "send" and "receive" operations intricately em-

bedded in the code. This "hard wires" all algorithm choices, inhibiting exploration of alternatives,

as well as making the parallel program difficult to design and debug.

Direct Compilation of Conventional Languages

The second approach to programming multiprocessors, direct coml)ilation of conventionM languages

for parallel execution, provides a nulnber of important advantages. First, it allows programmers

to continue using familiar languages as they move to newer and more complex machines. Second,

there is a large body of existing l)rograms which can 1)e transported to parallel architectures without

change. Third, the details of the target architecture are invisible to the programmer, so the complex

load-balancing and program design issues, which must be faced with the explicit-tasking languages,

are not present.

This approach is, in a real sense, a direct outgrowth of successful research in construction of

vectorizing compilers, and is currently being actively explored by several research groups [6, 7,

26, 51, 56, 63, 65]. Since the millions of lines of existing sequential programs cannot be easily

replaced, nor are they readily modifiable, there is clear importance to this approach, and it will

surely continue.

There are, however, a number of difficulties with this approach. The major one is that the

semantics of conventional languages strongly reflects the sequential von Neumann architecture,

making the task of automatic restructuring very difficult. Extracting parallelism from such pro-

grams requires very aggressive data-flow analysis including array subsection and inter-procedural

analysis. Moreover, existing languages, especially Fortran, encourage programming styles which

make it extremely difficult for compilers to extract much parallelism. Freely "equivalenced" arrays,
I

and passing of "pointers" to simulate dynamic allocation, severely limit the compiler's ability to

extract parallelism.

Also, once the parallelism has been exposed, it has to be mapped onto the target architecture.

The appropriate mapping, including the distribution of data and work across the processors, is

critically dependent on the characteristics of the program and also that of the target machine.

Because the general mapping problem has been shown to be NP-complete the heuristic algorithms

used tend to generate sub-optimal code. Given all these problems, the end result seems to be

that direct compilation of sequential languages can extract only modest amounts of loop-level

parallelism.

The Alternative: Modest Language Extensions

As argued above, the state of the art in advanced compiler design is not yet up to the task of

parallelizing a sequential application for execution on a massively parallel system with a complex

memory hierarchy. Consequently, the programmer must participate in this process. While there is

a wide variety of new parallel programming languages that help solve this problem, we will focus

attention on three approaches based on modest extensions and annotation systems for Fortran and

C+-}-. The goal of each system is to provide high performance and portability across the three

prevailing classes of computer architectures which are distinguished by the memory model they

present to the programmer.

True Shared Memory. The address space is global to the machine and access to memory is

uniform. Examples of this class include the CRAY C90 and the SGI Power Challenge Series.

Shared Memory with Non-Uniform Memory Access (NUMA). The address space is global

to the machine and access to memory is non uniform, i.e., access time depends on the address

and the processor doing the data access. Examples of this class include the BBN TC2000,

the CRAY T3D and the Convex MPP.

Distributed Memory Architecture: The address space is local to each processor and access to

remote data is done usually via message passing. Examples here include the Intel Paragon,

nCube, Parsytec, Meiko and Thinking Machines CM-5.

2

Becausethefirst twocategoriesprovideaglobaladdressspacefor referencingdata,they arethe
closestto themodelmostfamiliar to users.Consequently,the mostdirect wayto makeall three
sharethis propertyis to buildanoperatingsystemlayerfor the distributedmemorymachinesthat
providesa "sharedvirtual menmry"modelon top of the native messagepassingsystem. Given
sucha system,anyFortranor C programcanexecutewithout modificationon the machine.The
problemisthenreducedto providinga wayfor thecompilerto partition parallelloopsandschedule
accessto sharedobjects.Fortran-S,designedat IRISA isonesuchsystem.In the paragraphsthat
follow, weshalldescribemanyof the important ideasthat go into the constructionof a shared
virtual memoryoperatingsystemand the Fortran-Scompiler.

Fortran-Susesprogramannotationsto partition controlandtheoperatingsystemautomatically
partitionsthedata. An alternativestrategyis to asktheuserto specifythewaythedatashouldbe
partitionedandhavethe compilerdecidehowto partition the control. HighPerformanceFortran
(HPF) followsthisapproach.While HPFcodecouldbecompiledfor asharedvirtual memory,most
systemswill usethecompilerto generateexplicitmessagepassingondistributedmemorymachines.
In the third sectionof this paperwedescribethe HPF modeland the languageannotationsand
extensionsrequiredto implementit.

A third approachwhichcombinesthefeaturesof bothHPFandsharedvirtual memoryispC++
whichis basedonalanguageextension,calledconcurrentaggregates,whichallowstheprogrammer
to definea setof distributedobjectswhichmaybe referencedfrom anyprocessorin this system.
As with HPF, theuserprovidesinformationto the systemabout howthe dataobjectsshouldbe
partitionedamongthe systemmemorymodules.However,communicationbetweenobjectsusesa
mechanismbasedon the SVMpagingmodel,but insteadof migratingpagesof data,copiesof data
objectsaremigrated.In the last sectionof this paperwedescribepC++ andits executionmodel.

In this paperwehavenot describedother l)romisingapproaches.Amongtheseare functional
programminglanguagessuchasSISAL[43]andID, andtask parallelsystemssuchasCC++ [31],
Linda [5],Fortran-Mor that proposedin [13].

2 Fortran-S and Shared Virtual Memory

Programming with shared-memory or NUMA is usually simpler than programming distributed

memory architectures because they offer a global view of the memory where distributed memory

architectures let the user deals with data exchanges between processors by means of messages

passing. Shared memory architectures are attractive from the programming point of view but

they cannot afford scalability. As the number of processors increases the cost of the switch used

to connect memory to processors increases very fast, and may even not be built at the required

speed. Fully distributed memory architectures, on the other end, are scalable but do not offer to

the programmer a single address space, making programming more complex.

For programming distributed memory architectures, approach as HPF proposes a global address

space to the programmer and fills the gap between the l)rogrammer model and the machine by using

sophisticated compiler techniques and the help from the programmer who is in charge of specifying

at a high level the data distribution on the processors. Another alternative consists in providing

the functionalities of a shared memory (it becomes virtual in this case) either implemented using

hardware support or using operating system support. This approach makes distributed memory

architectureslook like NUMA architectures which makes programming simpler and the compiler

much easier to design.

2.1 Shared Virtual Memory

A Shared Virtual Memory (SVM) provides to the user an abstraction from an underlying memory

architecture of a distributed memory parallel computer (DMPC). This memory abstraction is also

named VSM (Virtual Shared Memory), DSM (Distributed Shared Memory) [37], etc. We will use

SVM to name this memory abstraction. An SVM [39] is somewhat similar to the one which is

currently used on classic mainframe computers. However, it differs in the fact that this virtual

memory is shared by several processors. It provides a virtual address space that is shared by a

number of processes running on different processors of a distributed memory parallel computer.

The virtual address space is made up of pages* which are spread among local processor memories

according to a mapping function. Compared to a global address space available on shared memory

parallel computers (SMPCs), SVM relies on page caching and heavily on spatial locality. A global

address space, like the one available on the BBN, usually allows access to a single word through the

use of a fast interconnection network. In most cases DMPCs are loosely coupled architectures that

have a high latency network. Accessing the data at a page level absorbs this high latency when

spatial locality is exposed. Since the granularity of the data accesses is a page, several problems

arise. For example, how does one keep pages coherent that are stored in several caches? How do

we locate an up-to-date copy of a given page within the architecture? What happens when there

is not enough room in a cache?

The first problem is related to cache coherence. Since processors may have to read from or to

write to the same page, several processors have a copy of a page in their cache. If one processor

modifies its copy, other processors run the risk of reading an old copy. A cache coherence protocol

is needed to ensure that the shared address space is kept coherent [12]. A memory is considered to

be strongly coherent if the value returned by a read from a location of the shared address space is

the vaJue of the latest store to that location [12]. In most cases, implementation of strong coherence

in a SVM for DMPCs is based on an invalidation mechanism. It assumes that there is only one

copy of a page with write access mode at a given time or, if there is multiple copies of a page, each

of them are in read-only access mode. The processor that has written most recently into the page

is called the owner of the page. When a processor needs to write to a page, that is not present in

its cache or is present in read-only mode, it sends a message to the owner of the page in order to

move it to the requesting processor. It then invalidates all the copies in the system by sending a

message to the relevant processors. This invalidation strategy seems to be the best approach for

DMPCs. The faulting management mechanism of a MMU is sufficient to implement this approach

efficiently.

The second problem is called page ownership. When a processor needs to access a page, either in

write or read access mode, which is not located in its cache, it must ask the owner to send it a copy

of the page. This problem is related to the cache coherence protocol described previously. With the

invalidation protocol, there is always one owner for a page and the ownership changes according

to the page requests coming from other processors. Therefore, the problem is how to locate the

current owner of a given page considering that the owner of a page changes. A solution is to update

*the granularity afforded by hardware virtual memory

a databasethat keepstrack of themovementof pagesin the system.This databasecanbe either
centralized or distributed [39]. In the centralized approach, a processor (called the manager) is in

charge of updating the database for every page. When a processor needs a page, it sends a request

to the manager which forwards the request to the owner of the page. Consequently, the manager

is aware of all the movement of pages in the system. However, it may be a bottleneck since the

manager processor receives requests from all other processors. The user's process running on the

manager will be interrupted frequently and this approach will also create potential contention in

the network. Distributing the database over several processors is a means to avoid these drawbacks.

The last problem is called page swapping. The problem arises when a processor is the owner

of all the pages located in its cache and there is no more space in the cache. If it requests a new

page, it has to find space in its cache. It cannot throw away a page from its cache since it owns

all the pages. Therefore, pages have to be moved on an external high speed storage device, like

disks. Some implenmntations, such as KOAN [34], use the other local nmlnory for swapping page.

However, the size of the virtual address space is bounded by the sum of all local memory.

The implementation of SVM mechanisms is done mostly by software: page requests are pro-

cessed by the operating system running on each node. This implementation involves a substantial

overhead since, user's processes have to be stopped by the operating system to resolve page re-

quests. This task could be done by using dedicated VLSI hardware such is done with the KSR [2]

machine and SCI bus-based parallel architectures [1] such as the new Convex MPP

2.2 Why Shared Virtual Memory May Not Work

Shared Virtual Memory has nlany intrinsic problems. In the following paragraphs, we discuss some

of them.

Initial Page Distribution

The initial page distribution may lead to cold start misses, however this has a marginal effect on

performance. After the beginning of the application, pages migrate to processors according to data

accesses.

Page Thrashing

Page thrashing can lead to capacity misses. For instance consider the following loop:

doall i =l,n

doj = l,n

A(j,i) = f(.... B(i,j),...)

enddo

enddo

Due to the Fortran column-wise data layout, each access to matrix B will create a page fault if n

is large enough. In that case interchanging the loop would not help, but loop blocking would.

False Sharing

False Sharing occurs when more than one processor, at a time, writes to the same page. The strong

coherence mechanism ensures that each processor writing into a page sees the last modification of

it. For example, consider the following loop.

doall i = 1,n

ACi) = f(.....)

enddo

Assuming that A is allocated in a shared address space and is only stored into one page, when

increasing the number of processors the page will exhibit a ping-pong phenomena. That is, the

page will move back and forth between processors, each write costing one page fault at worst (each

word written will cost a data transfer of the size of the page). The execution of the loop becomes

sequential because a page manager will serve only one page request at a time. This phenomena

may severely degrade performance. However by increasing the size of the vector this phenomena

may become negligible.

Barrier

When progratnming using message passing, synchronization between processes comes for free; data

exchanges synchronize processes. When using shared variables, synchronization must be inserted

to ensure data dependences between processes. However synchronization does not have to be

implemented using shared variables. Most system support some sort of barrier operation which can

be used as the primary synchronization mechanism. If the barrier is too slow, serious performance

problems may result.

Broadcast

A drawback of shared virtual memory on DMPCs is its inability to run efficiently parallel algorithms

that contain a producer/consumers scheme. In these cases, a page is modified by a processor and

then it is accessed by the other processors. Since all page requests are sequentially processed by a

page manager the accesses to the data are done sequentially. This obviously constitutes a serious

bottleneck when the number of processors grows.

2.3 Why Shared Virtual Memory May Work

Shared virtual memory may work surprisingly well (see section 3.3) for the following reasons.

Vectorized Page access to data (block transfer)

Transferring a page makes efficient use of the network, masking most network latencies. There

is clearly a tradeoff when choosing the page size. A large page size makes efficient use of the

network, but increases the amount of unnecessary data transferred and false sharing becomes a

greater problem. A small page size transfers a greater percent of useful data and decreases false

sharing, but it makes inefficient usage of the network. To deal with a small transfer size on the

KSR, where subpages of 128 bytes are the basic transfer unit, prefetch and poststore facilities are

used to hide large access latencies.

6

i!ii!!i!!!!ii!i!iiiiii iiiii iii iiiiiii i!ii!!!ii!i!i!i!i!i!iiiiiiiiiiiiiii ii i iiii ii i !i ! !i! !!! ! !ii

ii,ii.il Local ::::::::::::::::::::::::Local iiiiiiiiiiiiiii!
i_iiii data ::::;:::::::::::::::::: iiii::ii::_iii::_i::_!i_!::iiii!i] iiiiiii_iiiiiiiidata iiii!i!!

,,.::::::::::::::::::::::::........
:!:_:i:i:i _i_!ii_i_iiiiii i:i:i:i:i:i:i:i:

i.ii.!.i_ishared ::::::::::::::::::::::::shared:::::::::::::::::::::::
!::!i::ildata :::::::::::::::::::::::::::::data ::::::::::::::::::::::

i!i!_iiii!iiii

........... iii_!i_!_ :::::::::::::::::::::::
:::::::::: "'"'''"" :i:i:i:;:i:!:!:i

iiiiiiiiii::lmemory[i_ii_ii!i_!iiiiiiiiiiiiiiiii]memory :::::::::::::::::::::::::::

::::::::illfor page ::::::::::::::::::::::::::::::::::for page iiiiii;iii!i!;i!!i
!::i::i::!::!::!lcaching ::::::::::::::::::::::::::::::::caching !iiiiiiiililiiii
::: :: _ r:':::::::::;::::!;i,:...
:::

Local liiii_i_i_i!i_iLocal i_i_i_:._!!i_i!Local iii::i!ii!ii!i::Local [iiiiii

data _ data iiiiiiiiiiiiiildata _i_!_i_i_!;!_idata
.............. iiiiiiiiiiiiii i_i_i_

::::'::': !:i:i:i:i:i:i:i
shared Iiiiiiiiiiiiiiishared iii!iiiiiii!iilshared iiiiiiiiiiiiiishared |iiiill
data iiiiiiiiiiiiiidata iiiiiiiiiiiiilldata iiiiiiiiiiiiiidata iilii!

i!iiiiiiiiiiiiii iilili
memory i!iiiiiiiiiiiiiimemory iiiiiiiiiiiiiiimemory iiiiiiiiiiiiiimemory liliil

............... !:_:!:i:!:i:i:forpage |i!iiii
forpage iiiililiiiiiiiiforpage forpage iiiiiiiiiiii!icaching |i!i!ii
caching !i!i!i!i!i!i!i!caching iiiiiiiiiiiiiiicaching ii_!!iiiiiiiil

,:!!i!i!;;ii;;;:.................... :iiiii;ii;ii;i:.................... :i:i:i:;:i:i:i _(:i:i:!

Figure 1: Allocation of data in memory, assuming 2 processors and assuming 4 processors, in the

case of 4 processors more memory can be devoted to page caching

Page caching allows the exploitation of data locality

Page caching is the only way to compensate for the cost of moving a page between processors. This

decreases the size of the effective SVM. Indeed the page caching memory is the remMnder of the

memory not used by the local data and the shared data. At some point if data are too big the

remaining memory may be too small to keep pages necessary for an algorithm to behave efficiently.

The main advantage of SVM over other mechanisms is that, even when locality properties of the

program cannot be discover at compile time, the SVM can still exploit it. In this respect Shared

Virtual Metnory addresses the same problem as the Parti inspector/executor scheme [66].

All variables do not have to be shared

Only variables that are subject to parallel computation should be shared.

leads to very inefficient code.

Sharing all variables

Not all parallel computations depend on the SVM

For example, exploiting reduction parMlelism is usually not done using shared virtuM memory.

Instead it can be implemented by the compiler by using message passing.

The Compiler Can Help A Lot

Compiler technique can help by optinlizing programs so that they make better use of the vir-

tual shared memory and also by decreasing the number of synchronizations in the program (i.e.

decreasing the number of barriers).

2.4 Parallel Loop Scheduling and Shared Virtual Memory

Parallel loops scheduling is a critical issue in a programming environment that relies on shared

virtual memory. Data movements are in charge of the system/hardware where loop scheduling is in

charge of the compiler/user. Good scheduling has to ensure data locality and load balancing. Bad

loop scheduling may result in many unnecessary page migrations, false sharing or an unbalanced

load. It shouldbenotedthat techniquessuchasselfguidedschedulingarenot verywellsuitedto
sharedvirtual memory,becauseastheexecutionof a parallelloop proceeds,the sizeof blocksof
iterationsthat areassignedto processorsdecreases.Consequently,falsesharingincreases.However,
whenassociatedwith a cachecoherenceprotocolthat allowsconcurrentaccessto the samepage,
this techniquemay becomeadequateif it can be implementedefficientlyon massivelyparallel
distributedmemoryarchitecture.

Therearetwomainschedulingtechniquesthat arewellsuitedto sharedvirtual memorybecause
they canbe usedto reducedatamovements.The first techniqueaddressesthe problemof false
sharingespeciallywhenstrongcoherenceprotocolsareused,andthesecondtechniqueisconcerned
with data reuseacrossloops. In addition,they canbeusedtogetherto providegoodlocality and
to decreasethefalse-sharing:

Page Aligned Scheduling

Page aligned scheduling can be used to reduce false sharing. The principle consists of distributing

iteration such that chunks of iterations allocated on processors are aligned with page boundaries.

For example, if we use a simple block scheduling strategy of a simple loop:

doi= I, N

A[i] = A[i] + ...

enddo

we get:

bf = coiling(N/P)

doall pid = 1,N,bf

do i= pid,min(pid+bf-l,N)

AEi] = AEi3 + ...

onddo

onddo

If NIP is not a multiple of the page size there will be false-sharing for each page shared by two

processors. A simple solution in that case is to consider a blocking factor bf that take into account

the page size (assuming A[1] is aligned on a page boundary):

bf = ceiling(ceiling(N/pagosize)/P) * pagesizo

doall pid = 1,N,bf

do i= pid,min(pid+bf-l,N)

A[i] = A[i] + ...

onddo

onddo

However this technique does not always balance the workload. In general, this technique works

well when the amount of data is large. A more complete description of the method is given in [25].

Affinity Scheduling

The affinity scheduling tries to minimize data movement by allocating iterations to processors

according to data location [42]. An affinity scheduling technique is provided on the KSR1 machine.

It should be noted that dynamic scheduling, to improve load balancing, can be implemented

with SVM but on distributed memory architectures the implementation of such a technique is

usually very costly at runtime.

2.5 Compiler Optimizations for SVM

Compiler optimization for Shared Virtual Memory consists in increasing data locality, and thus

minimizing data transfers. Optimization consists of removing shared variables as much as possible,

changing the data layout, and applying loop transformations to improve locality without killing

the load balance.

Removing Shared Variables

In some cases, it is possible to localize shared variables. The idea behind this optimization relies on

the compilers capability of detecting access to data structure that are disjoint between processors.

Compiler techniques used in this case are very close to the ones used for compiling FortranD and

HPF programs. [62, 30].

Array Padding and Data layout

The Array Padding operation consists of extending array dimensions such that dimensions of the

array are aligned with page boundaries. This reduces fadse-sharing because different vectors of the

array do not share any pages. The main disadvantages of this technique are that it wastes memory

(and so decreases the size of the memory that can be allocated to the cache) and also that this may

increase the amount of communication (unused data are loaded when accessing useful data). More

generally, data layout optimization tries to store data so that it minimizes false sharing [61, 18].

Optimizing Data Locality

Optimizing data locality relies on changing the access order to data structure so that it increases

the spatial locality of a loop or it exploits better temporal locality. Loop transformations like loop

interchanging, blocking, unimodular transformation may be used. When temporal locality exists,

it may be possible to exploit data locality using localization of a portion of an array section that

is subject to reuse. These techniques are common to global address space optimization and cache

locality optimization. For example, considering the following loop.

doall i=l,n

do j = l,n

do k =l,n

A(k,i) = f(....A(k,i))

enddo

enddo

enddo

It can be transformed into

doall i--1,n

do tffil,n

temp(t) = A(t,i)

enddo

doj = 1,n

do k =l,n

Zemp(k) = f(...,temp(k))

enddo

enddo

do t=l ,n

A(z,i) = temp(t)

enddo

enddo

where tclap is allocated locally on processors. This optinfization may reduce the number of page

faults and the false-sharing. It should be noted that the array temp is the reference window as

defined in [21, 9]. The cost of the copy is amortized by exploiting the temporal locality. However if

there was no page thrashing and no false-sharing on array A in the original loop, there is no gain in

using this transformation. When applying this kind of optimization, the size of temporaries must

be limited. These techniques [63, 4, 41, 3, 23, 64, 55, 16, 44] are well known but usually targeted for

hardware cache or local memory. Most of these techniques should be revisited to take into account

the characteristics of shared virtual memory and in particular the false sharing phenomena.

Barrier Removal

When programming with a shared memory model (especially when the execution model is SPMD)

synchronization between processes relies on barriers. One optimization the compiler can perform is

to decrease the number of synchronization in the program. More generally, part of the optimization

process consists in removing, as much as possible, calls to the runtime system.

2.6 Runtime Optimization for SVM

In some case, support for optimizations may come from system capabilities:

Weak Coherence

Several weak cache coherence protocols have been studied in the past. Each of them has some

properties that can be exploited in a specific context [50, 57]. A modified version of the strong

coherence protocol can be considered as a weak cache coherence protocol. If data accesses are

made in different memory locations, it allows processors to modify their own copy of a page,

without invalidating copies in other processors. When restoring the strong coherence protocol, all

the copies of a page which have been modified are merged into a single page that reflects all the

changes. From the programmer's point of view, the memory is always strongly coherent at a word

level but is weak coherent at a page level. However such weak coherence scheme does not come

10

for free; its cost depends (usually linearly) on the nlaxinmm number of page copies there are to

merge at end of the page weak coherence phase there is to perform. Weak Coherence protocol can

be used for parallel loops because there is no data dependence between iterations of the loops and

so no several writes to the same word of a page are performed by several different iterations.

Page Broadcast

Producer/consumers scheme can be efficiently managed by using the broadcasting facility of the

underlying topology of DMPCs (hypercube, 2D-mesh, etc.). All pages that have been modified by

the processor in charge of running the producer phase are broadcast to all other processors that

will run the consumer phase in parallel. Since the producer has to keep track of all pages that

have been modified, two new operating system calls have to be added in the user's code in order

to specify both the beginning and the ending of the producer phase.

Page locking

Page locking allows a processor to lock a page into its cache until it decides to release it. This basic

mechanism can be used to implement atomic update in a memory location. The user is responsible

for adding two system calls that specify the beginning and the ending of the code section where

each remote data access requires a page to be locked into the cache. Page locking is very efficient

and minimizes the number of critical sections within a parallel code. On loosely coupled parallel

architectures, such as DMPCs, using critical sections are time expensive. To illustrate this, let us

take a sinai] example such as a matrix assembly found in finite element applications. A loop is

used to scan an irregular mesh and values are accumulated into a matrix. Access to this matrix is

made by through an index scheme and there are often runtime data dependences. Consequently the

loop can be parallelized if the accumulation is executed within a critical section to avoid multiple

processors writing at the same time to the same matrix element. A page locking mechanism can

replace many critical sections. Before updating a matrix element, the page that contains the matrix

element is locked into the cache and then release after the update. The cost of such synchronization

is simply related to the number of processors that access to the same page at the same time.

2.7 Mixing Messages and Shared Virtual Memory

Mixing of message passing and shared variables can be used to improve performance in library

code. When dealing with shared variables and messages, programming is somewhat simplified

since the programmer does not have to worry about the data distribution. The programmer only

has to think in term of parallel processes. One of the main advantage of this approach, is that

an efficient algorithm may be implemented independently of the program it is called from. For

example, consider the in-place matrix transpose. This algorithm behaves very badly with SVM

when data transfer is at the level of pages. But by using message passing to do the transpose, it

is possible to get speedup on this operation. The algorithm can be written so it is independent

of the data distribution of the matrix. In a pure message passing programming environment, it is

not possible to provide such a primitive without forcing the programmer to use a predefined data

distribution of the matrix on the processor, this data layout that may be completely inadequate in

the remainder of the application.

ll

3 Fortran-S: a Prototype Environment for SVM

Fortran-S is a Fortran programming environment that relies on the shared virtual memory KOAN.

The programming model is based on shared variables and parallel loops. Parallel loops and shared

variables are declared to the compiler via directives. The project's main goal is to study compiler

and programming environment for shared virtual memory. Fortran-S differs from the KSR-Fortran

mainly in the execution model. KSR-Fortran relies on fork-and-join execution (i.e. the main thread

is spawn in multiple threads when parallel phases of execution occur) where Fortran-S relies on a

SPMD execution model (i.e. a thread is created on every processor during the loading phase). To

illustrate Fortran-S, we provide the following small example:

real v(n,n)

C$ann[Shared(v)]

do i = 1,n

tmp = 0.0

do k = 1,n

tmp= tmp + v(k,i)*v(k,i)

enddo

xnorm = 1.0 / sqrt(tmp)

do k = 1,n

v(k,i) = v(k,i) * xnorm

enddo

CSann[DoShared(" BLOCK")]

doj = i+l,n

trap = 0.0

do k = 1,n

trap = trap + v(k,i)*v(kd)
enddo

do k = 1,n

v(kj) = v(kj) - tmp*v(k,i)
enddo

enddo

enddo

This is a parallel version of the Modified Gram-Schmidt algorithm. It is made up of two

nested loops. The outer loop normalizes each vector stored in the matrix v. When a vector is

normalized, the remaining vectors in the matrix are then corrected by executing the inner loop.

These corrections can be done in parallel. By adding, two Fortran-S directive, the code generator

is able to generate a SPMD code thatwill be executed in every processor. The first directive

(C$ann[Shared(v)]) specifies that matrix v has to be stored in the shared virtual memory, since

it will be updated within a parallel loop. Other variables are replicated in the local memory of

each processor. Every processor executes the outer loop as well as all assignments that modify

a local variable. However, for each outer loop iteration, only one processor updates the shared

variable v(k,i)). (In the previous example, every processor will write into replicated variables trap

12

andxnorm.) The second directive (CSann[DoShared(" Bk0CK")) indicate that the following loop is

a parallel loop. Each processor is in charge of executing a chunk of the iteration space. A detailed

description of Fortran-S can be found in [11].

3.1 KOAN Runtime

The KOAN SVM is embedded in the operating system of the iPSC/2. It allows the use of fast and

low-level communication primitives as well as a Memory Management Unit (MMU). The KOAN

SVM implements the fixed distributed manager algorithm as described in [39] with an invalidation

protocol for keeping the shared memory coherent at all times. A detailed description of the KOAN

SVM can be found in [34]. Let us now summarize some of the functionalities of the KOAN SVM

runtime.

KOAN SVM provides the user with several memory management protocols for efficiently han-

dling special memory access patterns. One of these is when several processors have to write into

different locations of the same page. This pattern involves many messages since the page has to

move from processor to processor (as with the ping-pong effect or false sharing). At a cost of adding

some new subroutine calls in the parallel code, KOAN can let processors concurrently modify their

own copy of a page. Another drawback of shared virtual memory on DMPCs is its inability to

run efficiently parallel algorithms that contain a producer/consumers scheme: a page is modified

by a processor and then accessed by the other processors. KOAN SVM can efficiently manage this

memory access pattern by using the broadcasting facility of the underlying topology of DMPCs

(hypercube, 2D-mesh, etc.). All pages that have been modified by the processor in charge of run-

ning the producer phase are broadcast to all other processors that will run the consumer phase in

parallel. KOAN SVM provides barrier synchronization as well as subroutines to manage critical

sections. These features are implemented by using messages instead of shared variables. KOAN is

compatible with the NX/2 operating system, i.e. primitives provided by the system can be used

simultaneously with KOAN.

We have performed measurements in order to determine the costs of various basic operations

for both read and write page faults (the size of a page is 4 Kbytes) of the KOAN shared virtual

memory. For each type of page fault (read or write), we have tested the best and worst possible

situation on different numbers of processors. For a 32-processor configuration, the time required to

resolve a read page fault is in the range of 3.412 ms to 3.955 ms. For a write page fault, timing

results are in the range of 3.447 ms to 10.110 ms depending on the number of copies that have to

be invalidated. These results can be compared with the communication times of the iPSC/2: the

latency is roughly 0.3 m_ and sending a 4 Kbytes message (a page) costs between 2.17 ms and

2.27 ms depending on the number of routing.

3.2 Fortran-S Code Generator

Fortran-S t relies on parallel loops to achieve parallelism. Parallel execution is achieved using

the SPMD execution model (Single Program Multiple Data). At the beginning of the program

execution, a thread is created on each processor and each processor starts to execute the program.

One of the main functions of the Fortran-S compiler is to make the SPMD execution to look like a

tThe prototype compiler has been implemented using the Sigma System [22]

13

With strong
proc.

1
2

4

8

16

32

1

2

4

8

16

32

100 x 100

Times (ms) Speedup

3112

1927 1.61

1280 2.43

1322 2.35

3882 0.80

5339 0.58

3112

1972 1.58

1311 2.37

923 3.37
921 3.38

1151 2.70

Eft.

80.75

60.78

29.43

5.01

1.82

With wea$

coherence

200 x 200

Times(ms) Speedup

12933

7323 1.77

3975 3.25

2284 5.66

1446 8.94

1928 6.71

coherence

Eft.

88.30

81.34

70.78

55.90

20.96

12933

78.90 7323

59.34 4016

42.15 2305

21.12 1567

8.45 1244

1.77 88.30

3.22 80.51

5.61 70.14

8.25 51.58

10.40 32.49

Table 1: Performance results for the Jacobi loops.

single threaded execution, by appropriate insertion of synchronization and the correct updating of

shared variables. The programming model uses directives to specify shared variables and parallel

loops. A shared variable is accessible in read or write from all the processors. A non shared variable

is duplicated on all the processors. Since every processor executes the sequential code sections, non-

shared variables have always the same value. The iteration space of a parallel loop is distributed

over the processor. Each processor only executes a subset of the iteration space. Fortran-S provides

several directives to generate efficient parallel code [11].

3.3 Performance

In this section we present the first results obtained using Fortran-S on an Intel iPSC/2 with

32 nodes. The goal of these experiments was to port sequential Fortran 77 programs to Fortran-S

and to measure the performance obtained. We did not intended, in those early performance mea-

surements, to modify extensively the applications. Rather, we intended to measure performance of

Fortran-S in a straight forward translation from Fortran 77. Very few modifications have been done

to the original program. The primary modification was to expose parallel loops in the programs.

However no modification of the data structure used in the program was made. Also they were

no major modification to the algorithms, so the scalability of some application is not limited by

Fortran-S but by the algorithm used in the application. The problem of false-sharing that appears

in many applications was solved using a weak coherence protocol.

The first code used is taken from a Jacobi iteration. Table 1 gives the speedups and efficiencies

for different problem sizes when using either a strong or a weak cache coherence protocol. For a

matrix size set to 100 x 100, we got a "speed-down" when the number of processors is greater than

16. False sharing could be avoided by using weak coherence protocol. For the same problem size,

this cache coherence protocol inlproves the speedups a little, but the speed-up remains fiat. For a

larger problem size (200 x 200) we did not observe such phenomena. However when the number of

processors is set to 32, the efficiency is bad (20.71%). The weak cache coherence protocol increases

the efficiency to 32.49%. This behavior is observed only for small matrices. For large matrices the

14

With strong

proc.

1

2

4

8

16

32

1

2

4

8

16

32

100 x 100

Times (ms) Speedup
15694

7920 1.98

4056 3.87

2206 7.11

3393 4.63

4379 3.58

15694

7923 1.98

4048 3.88
2202 7.13

1287 12.19

884 17.75

Eft.

99.08

96.73
88.93

28.91

11.20

With weak

coherence

200 x 200

Times (ms) Speedup
127657

64037 1.99

32292 3.95
16522 7.73

8982 14.21

5196 24.57

coherence

Eft.

99.67

98.83

96.58

88.83

76.78

127657

99.04 64036

96.92 32276

89.09 16521

76.21 8972

55.48 5206

1.99 99.68

3.96 98.88

7.73 96.59

14.23 88.93

24.52 76.63

Table 2: Performance results for the matrix multiply.

efficiency is close to the tna_dnmnl.

The second parallel algorithm we studied is the matrix multiply. Table 2 gives timing results

for small matrices (100 × 100 and 200 × 200). For larger matrix size, speedups are near from the

maximum. This can be seen in this table; for a 32 nodes configuration, speedups increase from

3.58 to 24.57 when the nunlber of matrix elements quadruples. However, for small matrices, the

results can be improved by using the weak cache coherence protocol. Indeed, the poor performance

is always due to the same effect: "false-sharing'. The same table provides timing results when the

parallel loop is executing with weak coherence. For the small matrix, the gain in performances is

impressive. When the number of processors is set to 32, speedup augments from 3.58 to 17.75.

proc.

1

2
4

8

16

32

1

2

4

8

16
32

Strong coherence

Times (s) Speedup

125.99

79.34 1.59

64.20 1.96

61.59 2.05

65.49 1.92

78.79 1.60

1986.81

1029.11 1.93

562.52 3.53

339.23 5.86

233.10 8.52
205.75 9.66

Eft.

79.40

49.06

25.57

12.02

5.00

96.53

88.30

73.21

53.27

30.18

200 x 200

Weak coherence

Times (s) Speedup

125.99

66.34 1.90

37.07 3.40

23.99 5.25

20.61 6.11

23.62 5.33

500 x 500

1986.81

1007.51 1.97

517.57 3.84

276.17 7.19

163.98 12.12

124.71 15.93

Eft.

66.34

84.97

65.65

38.21

16.67

98.60

95.97

89.93

75.73

49.79

Weak+Broadc_t

Times (s) Speedup

125.99

66.69 1.89
37.09 3.40

23.04 5.47

16.85 7.48

14.88 8.47

1986.81

1013.20 1.96

522.38 3.80

278.72 7.13

158.97 12.50

101.62 19.55

Eft.

94.46

84.92

68.35

46.73

26.46

98.05
95.08

89.10

78.11

61.10

Table 3: Performance results for the MGS algorithm.

The last experiment involved the Modified Gram-Schmidt algorithm described above. This

algorithm consists of two nested loops. We added some directives in order to improve the efficiency

15

of the parallel MGS algorithm. The vector, which is modified in the sequential section, is broadcast

to every processor, since it will be accessed within the parallel loop. A weak cache coherence

protocol is also associated with the inner loop to avoid false sharing. A detailed study of this

algorithm can be found in [52, 53]. Table 3 summarizes the results we obtained with different

strategies.

Several other parallel algorithms and applications have been ported to KOAN. Their perfor-

mance results are presented in [54, 10].

4 High Performance Fortran.

Recently an international group of researchers from academia, industry and government labs formed

the High Performance Fortran Forum aimed at providing an intermediate approach in which the

user and the compiler share responsibility for exploiting parallelism. The main goal of the group

has been to design a high-level set of standard extensions to Fortran called, High Performance

Fortran (HPF), intended to exploit a wide variety of parallel architectures [28, 40].

The HPF extensions allow the user to carefully control the distribution of data across the

memories of the target machine. However, the computation code is written using a global name

space with no explicit message passing statements. It is then the compiler's responsibility to analyze

the distribution annotations and generate parallel code inserting communication statements where

required by the computation. Thus, using this approach the programmer can focus on high-level

algorithmic and performance critical issues such as load balance while allowing the compiler system

to deal with the complex low-level machine specific details.

Earlier efforts

The HPF effort is based on research done by several groups, some of which are described below.

The language IVTRAN [47], for the SIMD machine ILLIAC IV, was one of the first languages to

allow users to control the data layout. The user could indicate the array dimensions to be spread

across the processors and those which were to be local in a processor. Combinations resulting in

physically skewed data were also allowed.

In the context of MIMD machines, Kali (and its predecessor BLAZE) [45, 46] was the first

language to introduce user-specified distribution directives. The language allows the dimensions of

an array to be mapped onto an explicitly declared processor array using simple regular distributions

such as block, cyclic and block-cyclic and more complex distributions such as irregular in which the

address of each element is explicitly specified. Simple forms of user-defined distribution are also

permitted. Kali also introduced the idea of dynamic distributions which allow the user to change

the distribution of an array at runtime. The parallel computation is specified using forall loops

within a global name space. The language also introduced the concept of an on clause which allows

the users to control the distribution of loop iterations across the processors.

The Fortran D project [19] follows a slightly different approach to specifying distributions. The

distribution of data is specified by first aligning data arrays to virtual arrays knows as decompo-

sitions. The decompositions are then distributed across an implicit set of processors using relative

weights for the different dimensions. The language allows an extensive set of alignments along

16

with simpleregularandirregulardistributions.All mapping statements are considered executable

statements, thus blurring the distinction between static and dynamic distributions.

Vienna Fortran [14, 68] is the first language to provide a complete specification of distribution

constructs in the context of Fortran. Based largely on the Kali model, Vienna Fortran allows arrays

to be aligned to other arrays and which are then distributed across an explicit processor array. In

addition to the simple regular and irregular distributions, Vienna Fortran defines a generalized

block distribution which allows unequal sized contiguous segments of the data to be mapped the

processors. Users can define their own distribution and alignment functions which can then be

used to provide a precise mapping of data to the underlying processors. The language maintains

a clear distinction between distributions that remain static during the execution of a procedure

and those which can change dynamically, allowing compilers to optimize code for the different the

two situations. It defines multiple methods of passing distributed data across procedure bound-

aries including inheriting the distribution of the actual arguments. Distribution inquiry functions

facilitate the writing of library functions which are optimal for multiple incoming distributions.

High Performance Fortran effort has been based on the above and other related projects [8, 27,

38, 48, 58, 59, 60]. In the next few sub-sections we provide, short introduction to HPF concentrating

on the features which are critical to parallel performance.

4.1 HPF Overview

High Performance Fortran $ is a set of extensions for Fortran 90 designed to allow specification of

data parallel algorithms. The programmer annotates the program with distribution directives to

specify the desired layout of data. The underlying programming model provides a global name

space and a single thread of control. Explicitly parallel constructs allow the expression of fairly

controlled forms of parallelism, in particular data parallelism. Thus, the code is specified in high

level portable manner with no explicit tasking or communication statements. The goal is to allow

architecture specific compilers to generate efficient code for a wide variety of architectures including

SIMD, MIMD shared and distributed memory machines.

Fortran 90 was used a base for HPF extensions for two reasons. First, a large percentage of

scientific codes are still written in Fortran (Fortran 77 that is) providing programmers using HPF

with a familiar base. Second, the array operations as defined for Fortran 90 make it eminently

suitable for data parallel algorithms.

Most of the HPF extensions are in the form of directives or structured comments which assert

facts about the program or suggest implementation strategies such as data layout. Since these

are directives they do not change the semantics of the program but may have a profound effect

on the efficiency of the generated code. The syntax used for these directives such that if HPF

extensions are at some later date accepted as part of the language only the prefix, !HPF$, needs

to be removed to retain a correct HPF prograan. HPF also introduces some new language syntax

in the form of data parallel execution statements and a few new intrinsics.

_This chapter is partially based on the High Performance Fortran Language Specification draft document [28]

which has been jointly written by several of the participants of the High Performance Fortran Forum. Also, the

specification (as described here) are still under review and may change when the final document is released.

17

Features of High Performance Fortran

In this subsection we provide a brief overview of the new features defined by HPF. In the next few

subsections we will provide a more detailed view of some of these features.

Data mapping directives: HPF provides an extensive set of directives to specify the distribu-

tion and alignment of arrays.

Data parallel execution features: The FORALL statement and construct and the INDEPENDENT

directive can be used to specify data parallel code. The concept of pure procedures callable

from parallel constructs has Mso been defined.

New intrinsic and library functions: HPF provides a set of new intrinsic functions includ-

ing system functions to inquire about the underlying hardware, mapping inquiry functions

to inquire about the distribution of the data structures and a few computational intrinsic

functions. A set of new library routines have also been defined so as to provide a standard

interface for highly useful parallel operations such as reduction functions, combining scatter

functions, prefix and suffix functions, and sorting functions.

Extrinsic procedures: HPF is well suited for data parallel programming. However, in order

to accommodate other programming paradigms, HPF provides extrinsic procedures. These

define an explicit interface and allow codes expressed using a different paradigm, such as an

explicit message passing routine, to be called from an HPF program.

Sequence and storage association: The Fortran concepts of sequence and storage association§

assume an underlying linearly addressable memory. Such assumptions create a problem in

architectures which have a fragmented address space and are not compatible with the data

distribution features of HPF. Thus, HPF places restrictions on the use of storage and sequence

association for distributed arrays. For example, arrays that have been distributed can not

be passed as actual arguments associated with dummy arguments which have a different

rank or shape. Similarly, arrays that have been storage associated with other arrays can be

distributed only in special situations. The reader is referred to the HPF Language specification

document [28] for full details of these restrictions and other HPF features.

4.2 Data Mapping Directives

A major part of the HPF extensions are aimed at specifying the alignment and distribution of the

data elements. The underlying intuition for such mapping of data is as follows. If the computations

on different elements of a data structure are independent, then distributing the data structure will

allow the computation to be executed in parallel. Similarly, if elements of two data structures

are used in the same computation, then they should be aligned so that they reside in the same

processor memory. Obviously, the two factors may be in conflict across computations, giving rise

to situations where data needed in a computation resides on some other processor. This data

dependence is then satisfied by communicating the data from one processor to another. Thus, the

_Informa_lly,sequence association refers to the Fortran assumption that the elements of an array are in particular
order (column-major) and hence allows redimensioning of arrays across procedure boundaries. Storage association
allows COMMON and EQUIVALENCE statements to constrain and Mign data items relative to each other.

18

Arraysor
otherobjects

C
Group of

aligned objects

,C

Abstract
processors as a
user-declared

Cartesian mesh

ALIGN (static)
or REALIGN

(dynamic)

DISTRIBUTE

(static) or
REDISTRIBUTE

(dynamic)

Physical
processors

.C
Optional

implementation-

dependent
directive

Figure 2: HPF data distribution model

main of goal of mapping data onto processor memories is to increase parallelism while minimizing

communication such that the workload across the processors is balanced.

HPF uses a two level mapping of data objects to abstract processors as shown in Figure 2.

First, data objects are ahgned to other objects and then groups of objects are distributed on a

rectilinear arrangement of abstract processors.

Each array is created with some mapping of its elements to abstract processors either on entry to

a program unit or at the time of allocation for allocatable arrays. This mapping may be specified

by the user through the ALIGN and DISTRIBUTE directives or in the case where complete

specifications are not provided may be chosen by the compiler.

Processors Directive

The PROCESSORS directive can be used to declare one or more rectilinear arrangements of

processors in the specification part of a program unit. If two processor arrangements have the same

shape, then corresponding elements of the two arrangements are mapped onto the same ,physical

processor thus ensuring that objects mapped to these abstract processors will reside on the same

physical processor.

The intrinsics NUMBER_OF_PROCESSORS and PROCESSOR_SHAPE can be used to

determine the actual number of physical processors being used to execute the program. This

information can then be used in declaring the abstract processor arrangement.

!HPF$ PROCESSORS

!HPF$ PROCESSORS

!HPF$ PROCESSORS

!HPF$ PROCESSORS

P(N)

Q(NUMBER_OF_PROCESSORS ())

R(8, NUMBER_OF_PROCESSORS ()/8)

SCALARPROC

Here, P is a processor arrangement of size N, the size of Q (and the shape of R) is dependent

upon the number of physical processors executing the program while SCALARPROC is conceptu-

ally treated as a scalar processor.

19

A compiler must accept any processordeclarationwhich iseitherscalaror whose totalnum-

ber of elements match the number of physicalprocessors.The mapping of the abstractproces-

sorsto physicalprocessorsiscompiler-dependent.Itisexpected that implementors may provide

architecture-specificdirectivesto allowusersto controlthismapping.

Distribution Directives

The DISTRIBUTE directive can be used to specify the distribution of the dimensions of an array

to dimensions of an abstract processor arrangement. The different types of distributions allowed

by HPF are: BLOCK(expr), CYCLIC(expr) and *

PARAMETER (N = NUMBER_OF_PROCESSORS())

!HPF$ PROCESSORS Q(NUMBER_OF-PROCESSORS ())

!HPF$ PROCESSORS R(8,NUMBER_OF.-PROCESSORS()/8)

REAL A(100), B(200),C(I00,200),D(100, 200)

!HPF$ DISTRIBUTE

!HPF$ DISTRIBUTE

!HPF$ DISTRIBUTE

!HPF$ DISTRIBUTE

A(BLOCK) ONTO Q

B(CYCLIC (5))

C(BLOCK, CYCLIC) ONTO R

D(BLOCK (10), *) ONTO Q

In the above examples, A is divided into N contiguous blocks of elements which are then mapped

onto successive processors of the arrangement Q. The elements of array B are first divided into

blocks of 5, which are then mapped in a wrapped manner across the processors of the arrangement

Q. The two dimensions of array C are individually mapped to the two dimensions of the processor

arrangement R. The rows of C are blocked while the columns are cyclically mapped. The one-

dimensional array D is distributed across the one-dimensional processor arrangement Q such that

the second axis is not distributed. That is each row of the array is mapped as a single object.

To determine the distribution of the dimension, the rows are first blocked into groups of 10 and

these groups are then mapped to successive processors of Q. In this case, N must be at least 10 to

accommodate the rows of D. Note, that in the case of array B, the compiler chooses the abstract

processor arrangement for the distribution.

The REDISTRIBUTE directive is syntactically similar to the DISTRIBUTE directive but

may appear only in the execution part of a program unit. It is used for dynamically changing the

distribution of an array and may only he used for arrays that have been declared as DYNAMIC.

The only difference between DISTRIBUTE and REDISTRIBUTE directives is that the former

can use only specification expressions while the latter can use any expression including values

computed at runtime.

REAL A(100)

!HPF$ DISTRIBUTE (BLOCK), DYNAMIC ::A

k _ °.°

!HPF$ REDISTRIBUTE A(CYCLIC (k))

2O

Here, A starts with a block distribution and is dynamically remapped to a cyclic distribution whose

block size is computed at runtime.

When an array is redistributed, arrays that are ultimately aligned to it (see next subsection)

are also remapped to maintain the alignment relationship.

Alignment Directives

The ALIGN directive is used to indirectly specify the mapping of an array (the alignee) by spec-

ifying its relative position with respect to another object (the align-target) which is ultimately

distributed. HPF provides a variety of aligmnents including identity a£ignment, offsets, axis col-

lapse, axis transposition, and replication using dummy arguments which range over the entire index

range of the alignee. Only linear expressions are allowed in the specification of the align-target with

the restriction that a align dmnmy can appear only in one expression in an ALIGN directive. The

alignment function must be such that alignee is not allowed to "wrap around" or "extend past the

edges" of the align-target.

!HPF$ ALIGN

!HPF$ ALIGN

!HPF$ ALIGN

!HPF$ ALIGN

!HPF$ ALIGN

A(:,:) WITH B(:,:)

C(I) WITH D(I-5)

E(I,*) WITH F(I)

G(I) WITH H(I,*)

R(I,J) WITH S(J,I)

! identity alignment

! offset

! collapse

! replication

! transposition

If A is aligned to B which is in turn aligned with C then A is considered to be immediately aligned

to B but ultimately aligned to C. Note, that intermediate alignments are useful only to provide the

"ultimate" alignment since only the root of the alignment tree can be distributed.

The REALIGN directive is syntactically similar to the ALIGN directive but may appear only

in the execution part of a program unit. It is used for dynamically changing the alignment of an

array and may only be used for arrays that have been declared as DYNAMIC. As in the case

of REDISTRIBUTE, the REALIGN directive can use computed values in its expression. Note,

that only an object which is not the root of an alignment tree can be explicitly realigned and that

such a realignment does not affect the mapping of any other array.

Template Directive

In certain codes, we may want to align arrays to an index space which is larger than any of the

data arrays declared in the program. HPF introduces the concept of template as an abstract index

space. Declaration of templates uses the keyword TEMPLATE and a syntax similar to that of

regular data arrays. The distinction is that templates do not take any storage.

Consider the situation where two arrays of size N × (N + 1) and (N + 1) × N have to be aligned

such that bottom right corner elements are mapped to the same processor. This can be done as

follows:

21

!HPF$ TEMPLATE T(N+I,N+I)

!HPF$ REAL A(N,N+I), B(N+I,N)

!HPF$ ALIGN A(I,J) WITH T(I+I,J)

!HPF$ ALIGN B(I,J) WITH T(I,J+I)

!HPF$ DISTRIBUTE T(BLOCK , BLOCK)

As seen above, templates can be used as align-targets and may be distributed using a DISTRIBUTE

(or REDISTRIBUTE) directives but may not be an alignee.

Procedure Boundaries

HPF allows distributed arrays to be passed as actual arguments to procedures. As noted before,

HPF places restrictions on sequence association, therefore the rank and shape of the actual ar-

guments must match with those of the corresponding dummy arguments. HPF provides a wide

variety of options to specify the distribution of the dummy argument. The user can specify that

the distribution of the actual argument be inherited by the dummy argument. In other cases, the

user can provide a specific mapping for the dummy and actual argument may need to remapped to

satisfy this mapping. If the actual is remapped on entry, then the original mapping is restored on

exit from the procedure. The user can also demand that the actual argument be already mapped

as specified for the dummy argument. In this case, it is incumbent upon the callee to explicitly

remap before the call to the procedure. In the presence of interface blocks such a remap may be

implicitly provided by the compiler.

HPF also provides a INHERIT directive which specifies that the template of the actual argu-

ment be copied and used as the template for the dummy argument. This makes a difference when

only a subsection of an array is passed as an actual argument. Without the INHERIT directive,

the template of the dummy argument is implicitly assumed to be the same shape as the dummy

and the dummy is aligned to the template using the identity mapping.

4.3 Data Parallel Constructs

Fortran 90 has syntax to express data parallel operations on full arrays. For example, the statement

A = B + C indicates that the two arrays B and C should be added element by element (in

any order) to produce the array A. The two main reasons for introducing these features is the

conciseness of the expressions (note the absence of explicit loops) and the possibility of exploiting

the undefined order of elemental operations for vector and parallel machines. HPF extends Fortran

90 with several new features to explicitly specify data parallelism. The FORALL statement and

construct generalize the Fortran 90 array operations to allow not only more complicated array

sections but also the calling of pure procedures on the elements of arrays. The INDEPENDENT

directive can be used to specify parallel iterations.

Forall Statement

The FORALL statement extends the Fortran 90 array operations by making the index used to

range over the elements explicit. Thus, this statement can be used to make an array assignment to

22

arrayelementsor sectionsof arrays,possiblymaskedwith a scalarlogicalexpression.Thegeneral
form the FOR.ALL statementis asfollows:

FOR.ALL (triplet, ... [, scalar-mask])

assignment

where, a triplet has the form:

subscript = lower:, upper [: stride]

Here, the FORALL header may have multiple triplets and assignment is a arithmetic or pointer

assignment. First the lower bound, upper bound and the optional stride of each triplet are evaluated

(in any order). The cartesian product of the result provides the valid set of subscript values over

which the mask is then evaluated. This gives rise to the active combinations. The right hand

side of the assignment is then evaluated for all the active combinations before any assignment to

corresponding elements on the left hand side.

FOR.ALL (I=l,N, J=2,N)

A(I,J) = A(I,J-1)*B(I)

In the above example, the new values of the array A are determined by the old values of A in

the columns on the right and the array B.

Forall Construct

The FORALL construct is a generalization of the FORALL statement allowing multiple state-

ments to be associated with the same forall header. The only kind of statements allowed are

assignment, the WHERE statement and another FOR.ALL statement or construct.

FOR.ALL (triplet, ... [, scalar-mask])

statement

END FORALL

Here, the header is evaluated as before and the execution of one statement is completed for all

active combination before proceeding to the next statement. Thus, conceptually in a FOR.ALL

construct, there is a synchronization before the assignment to the left hand side and between any

two statements. Obviously, some of these synchronization may not be needed and can be optimized

away.

Pure procedures

HPF has introduced a new attribute for procedures called PURE which allows users to declare

that the given procedure has no side effects. That is the only effects of the procedure are ei-

ther the value returned by the function or possible changes in the values of INTENT(OUT) or

INTENT(INOUT) arguments. HPF defines a set of syntactic constraints that must be followed

23

in order for a procedure to be pure. This allows the compiler to easily check the validity of the

declaration. Note, that a procedure can only call other pure procedures to remain pure.

Only pure functions can be called from a FORALL statement or construct. Since pure functions

have no side-effects other than the value returned, the function can be called for the active set of

index combinations in any order.

Independent Directive

The INDEPENDENT directive can be used with a DO loop or a FORALL statement or con-

struct to indicate that there are no cross-iteration data dependences. Thus, for a DO loop the

directive asserts that the iterations of the loop can be executed in any order without changing the

final result. Similarly when used with a FORALL construct or statement, the directive asserts

that there is no synchronization required between the executions of the different values of the active

combination set.

With a DO loop, the INDEPENDENT directive can be augmented with a list of variables

which can be treated as private variables for the purposes of the iterations.

!HPF$ INDEPENDENT, NEW(X)

DO I-- 1,N

X = B(I)
,,,

A(f(I)) = X

END DO I-- 1,N

Here, the INDEPENDENT directive is asserting that the function f(I) returns a permutation

of the index set, i.e., no two iterations are going to assign to the same element of A. Similarly,

the new clause asserts that the loop carried dependence due to the variable X is spurious and the

compiler can execute the loops by (conceptually) allocating a new X variable for each iteration.

4.4 Examples of HPF Codes

In this section we provide two code fragments using some of the HPF features described above.

The first is the Jacobi iterative algorithm and the second is the Modified Gram-Schmidt algorithm

discussed earlier.

The HPF version of the Jacobi iterative procedure which may be used to approximate the

solution of a partial differential equation discretized on a grid, is given below.

!HPF$ processors p(number..of_processors ())

real u(l:n,l:n), f(l:n,l:n)

!HPF$ align u :: f

!HPF$ distribute u (*, block)

forall (i=2:n-1, j = 2:n-l)

u(ij) = 0.25 * (f(ij) + u(i-1, j) + u(i+l, j) +

u(i, j-l) + u(i, j+l)

end forall

24

At eachstep,it updatesthe current approximation at a grid point, represented by the array u,

by computing a weighted average of the values at the neighboring grid points and the value of the

right hand side function represented by the array f.

The array f is aligned with the array u using the identity alignment. The columns of u (and

thus those of f indirectly) are then distributed across the processors executing the program. The

computation is expressed using a FORALL statement, where all the right hand sides are evaluated

using the old values of u before assignment to the left hand side.

To reiterate, the computation is specified using a global index space and does not contain any

explicit data motion constructs. Given that the underlying arrays are distributed by columns,

the edge columns will have to be communicated to neighboring processors. It is the compiler's

responsibility to analyze the code and generate parallel code with appropriate communication

statements inserted to satisfy the data requirements.

The HPF version of the Modified Gram-Schmidt algorithm is given belowfl.

real v(n,n)

!HPF$ distribute v (*, bloek)

do i = 1,n

tmp = 0.0

do k = 1,n

tmp = tmp + v(k,i)*v(k,i)

enddo

xnorm = 1.0 / sqrt(tmp)

do k - 1,n

v(k,i) -- v(k,i) * xnorm

enddo

!HPF$ indepedent, new (trap)

do j = i+l,n

trap = 0.0

do k = 1,n

tmp = trap + v(k,i)*v(kj)

enddo

do k = 1,n

v(k_j) = v(k,j) - tmp*v(k,i)

enddo

enddo

enddo

The first directive declares that the columns of the array v are to be distributed by block across

the memories of the underlying processor set. The outer loop is sequential and is thus executed by

all processors. Given the column distribution, in the ith iteration of the outer loop, the first two k

loops would be executed by the processor owning the ith column.

IIA Fortran 90 version of the code fragment, not shown here, would have used array constructs for the k loops.

This would make the parallelism in the inner loops explicit.

25

The second directive declares the j loop to be independent and trap to be a new variable. Thus

the iterations of the j loop can be executed in parallel, i.e., each processor updates the columns

that it owns in parallel. Since the ith column is used for this update, it will have to be broadcast

to all processors.

The distribution of the columns by contiguous blocks implies that processors will become idle

as the computation progresses. A cyclic distribution of the columns would eliminate this problem.

This can be achieved by replacing the distribution directive with the following:

!HPF$ distribute v (*, cyclic)

This declares the columns to distributed cyclically across the processors, and thus forces the inner

j loop to be strip-mined in a cyclic rather than in a block fashion. Thus, all processors are busy

until the tail end of the computation.

The above distributions only exploit parallelism in one dimension, wherea_ the inner k loops

can also run in parallel. This can be achieved by distributing both the dimensions of v as follows:

!HPF$ distribute v (block, cyclic)

Here, the processors are presumed to be arranged in a two-dimensional mesh and the array is

distributed such that the elements of a column of the array are distributed by block across a

column of processors whereas the columns as a whole are distributed cyclically. Thus, the first k

loop becomes a parallel reduction of the ith column across the set of processors owning the ith

column. Similarly, the second k loop can be turned into a FORALL statement which is executed

in parallel by the column of processors which owns the ith column. The second set of k loops,

inside the j loop, can be similarly parallelized.

Overall, it is clear, that using the approach advocated by HPF allows the user to focus on the

performance critical issues at a very high level. Thus, it is easy for the user to experiment with a

different distribution, by just changing the distribute directives. The new code is then recompiled

before running on the target machine. In contrast, the effort required to change the program if it

was written using low-level communication prinfitives would be much more.

5 Object Parallelism with pC++

pC++ is an experimental extension to C++ designed to allow programmers to build distributed

data structures with parallel execution semantics. These data structures are organized as "concur-

rent aggregate" collection classes which can be aligned and distributed over the memory hierarchy

of a parallel machine is a manner modeled on the High Performance Fortran Forum (HPF) di-

rectives for Fortran 90. The first version of the compiler is a preprocessor which generates Single

Program Multiple Data (SPMD) C++ code which runs on the Thinking Machines CM-5, the Intel

Paragon, the BBN TC2000 and the Sequent series of machines. As HPF becomes available on these

systems future versions of the compiler will allow object level linking between pC++ distributed

collections and HPF distributed arrays.

The basic concept of pC++ is the notion of a distributed collection, which is a type of concurrent

aggregate "container class" [15, 35]. More specifically, a collection is a structured set of objects

26

distributed across the processing elements of the computer. A runtime system uses the memory

hierarchy and processor interconnect topology of the target machine to guide the distribution of

collection elements. A collection can be an Array, a Grid, a Tree, or any other partitionable data

structure.

Collections have the following components:

• A collection class describing the basic topology of the set.

• A size or shape for each instance of the collection class. For example, the dimensions of an

array or the height of a tree.

A base type for collection elements. This can be any C++ type or class. For example, one

can define an Array of Floats, or a Grid of FiniteElements, or Matrix of Complex, or a Tree

of Xs, where X is the class of each node in the tree.

• A Distribution object. The distribution describes an abstract coordinate system that will be

distributed over the available memory modules of the target by the run-time system.

• A function object called the Alignment. This function maps collection elements to the abstract

coordinate system of the Distribution object.

The pC++ language has a library of standard collection classes that may be used (or subclassed)

by the programmer [36, 49, 17, 20]. This includes collection classes such as DistributedArray,

DistributedMatrix, Distributed Vector, and DistributedGrid. To illustrate the points above, consider

the problem of creating a distributed 5 by 5 matrix of floating point numbers. We begin by building

a Distribution. A distribution is defined by its number of dimensions, the size in each dimension and

how the elements are mapped to the processors. In HPF [28] this mapping is called a distribution.

Current distributions include BLOCK, CYCLIC and WHOLE, but more general forms will be

added later. Let us assume that the distribution is distributed over the processor's memories by

mapping Whole rows of the distribution to individual processors using a Cyclic pattern where the

i th row is mapped to processor memory i rood P, on a P processor machine.

pC++ uses a special implementation dependent library class called Processors. In the current

implementation, it represents the set of all processors available to the program at run time. To

build a distribution of some size, say 7 by 7, one would write

Processor P;

Distribution myDist(7, 7, kP, Cyclic, Whole);

Next, we create an alignment object called myAlign that defines a domain and function for

mapping the matrix to the distribution. The matrix A can be defined using the library collection

class DistributedMatrix with a base type of Float.

Align myAlign(5, 5, "[ALIGN(domain[i] [j], myDist [i] [j])]") ;

DistributedMatrix<Float> A(myDist, myAlign);

The collection constructor uses the alignment object, myAlign, to define the size and dimension

of the collection. The mapping function is described by a text string corresponding to the HPF

27

I0 00001

X(myTemplate, XAlign_

iH]. • _ O_OlO
Iooooo ioiooooo
I ° * • • • my/_l.ign iOJ • • • • 0

joo.oo -- Iolooooo
m° • • • • /hi • • • • •
mooooo loo,ooo

A(myTemplate, myAlign)/ I • • • O • @ @
f myTemplate_,7,&P,Cycfic, Whole)

Ioooool
Y(myTemplate, YAlign);

Figure 3: Alignment and Distribution

alignment directive. It defines a mapping from a domain structure to a distribution structure using

dummy index variables.

The intent of this two stage mapping, as it was originally designed for HPF, is to allow the

distribution to be a frame of reference so that different arrays could be aligned with each other in a

manner that promotes memory locality. For example, suppose we wish to perform a matrix vector

multiply. Since the DistributedMatriz and Distributed Vector library classes provide many common

functions through C++ function overloading, a matrix vector multiply is simply written as

Y = A'X;

where X and Y are distributed arrays. While the semantic meaning and computed result of the

expression is independent of alignment and distribution, performance is best if the alignment of

the operands matches the library function for matrix vector multiply. In this case, the algorithm

broadcasts the vector operand along the columns of the array and then performs a reduction along

rows. Aligning X along with the first row of the matrix A, and Y with the first column yields the

best performance. The vectors are declared by

Align XAlign(5, "[ALIGN(X[i], myDist[O][i])]");

Align YAlign(5, "[ALIGN(Y[i], myDist[i][O])]");

DistributedVector<Float> X(myDist, XAlign);

DistributedVector<Float> Y(myDist, YAlign);

The two stage mapping process for this example is illustrated in Figure 4.

5.1 Collection Functions and Parallelism

There are two forms of concurrency in pC++. One is based on the concurrent application of a

method function, associated with the element class across the entire collection, and the other type

is associated with special functions that are invoked as a set of parallel threads one running on

each processor. More precisely, a collection is a set of element objects. A local collection is the

subset of elements mapped to one processor by the alignment and distribution functions. Each

28

localcollectionis realizedasa Processor Object and there is an associated thread of computation

that executes all method functions that modify or access the local elements.

The memory model used by pC++ is not shared. As with HPF Fortran, there is a single main

thread of computation and parallel operations are invoked from that thread. Collection elements

are distributed over the processor objects which each have a private address space. Global data,

which can be accessed and modified by the main thread is visible to the processor objects, but a

processor object cannot modify Global data. Each processor object can read and write its local

collection of elements, but the only way a processor object or the main thread of execution can

access remote collection elements is through special kernel functions which which provide a copy of

remote collection elements.

A collection class C is a data type that is parameterized by the class of the element, C

< ElementType >. Collections have two types of methods: the standard public, private and pro-

tected methods of any normal class; and a set of fields and methods that are added to the element

class to provide access to the collection structure. This additional family of fields and methods are

called MethodO.fElement fields.

Syntactically, a collection class takes the form:

collection CollectionName: ParentCollection {

public:

private:

protected:

// Field variables declared here are local to each

// processor object.

// Methods declared here are executed in parallel by

// the associated processor object thread.

MethodOfElement:

// Field variables declared here are added to each element

// Methods declared here are added to the element class.

// These methods are the "data parallel" functions.

}

Data fields defined in the public, private and protected areas are duplicated in each processor

object. Methods in these areas are executed by the threads of the processor objects.

5.2 An Example: The Gram-Schmidt Algorithm

To illustrate these ideas we will consider the same Gram-Schmidt algorithm discussed earlier, pC++

programmers work by building collections classes derived from the base library. Because Gram-

Schnfidt works on column vectors of a matrix, we will cast our matrix as a distributed collection of

column vectors. Consequently, we shall assume we have a library of double precision vectors which

have all the standard vector-vector and vector-scalar operators,

29

class Vector{

public:

Vector(int n); // a constructor.

Vector & operator _=(double); // V = V • 3.14

double dotProduct(Vector _); // the dot product

Vector & operator -=(Vector); // V = V - W

Vector operator _(double); // mult. expression

We will define a collection MyMatrix which will be a distributed array of elements of class

Vector. The matrix object and the Gram-Sehnfidt operation will be invoked as

main(){

Processor P;

int n = 100;

Distribution myDist(n, &P, Cyclic);

Align myAlign(n, "[ALIGN(domain[i], myDist[i])]");

MyMatrix<Vector> M(myDist, myAlign, n);

M.gra_chmidt(n);

This declares M to be a MyMatrix collection of size n of elements of class Vector. The extra

parameter n on the declaration of M is passed to the element constructor so that each vector

element has size n. The function gramS'chmidt 0 will be a processor object parallel function of the

collection which is defined as

collection MyMatrix: Distributedhrray{

public:

void GramSchmidt(int n);

MethodDfElement:

void update(ElementType _);

virtual ElementType & operator _=(double);

virtual double dotProduct(ElementType _);

virtual ElementType _ operator -=(ElementType);

virtual ElementType operator _(double);

The element level, data parallel functions in this collection include a method update which will be

described below, and four virtual functions which are provided by the element class which, in our

case, is Vector. Because the collection is defined separately from the element, if we wish to assume

the element has special properties, these are listed as virtual functions. In the case of the Gram-

Schmidt algorithm we need to be able to compute the dot product of vectors, multiply vectors by

a scalar and subtract a multiple of one vector from another.

The Gram-Schmidt function is nearly a direct translation of the program in section 3.0.

3O

void MyMatrix::gramSchmidt(int n){

ElementType *v;

int i;

double temp;

for(i = O; i < n; i++){

v = this->Get_Element(i);

temp = v->dotProduct(v);

v *= 1.0 / sqrt(temp);

(*this)[i+l : n-1].update(v);

}

In this program gramSchmidt(u) is a collection public function which means that it is invoked

on each processor object. The main loop first extract the i th column vector element. The pointer

v obtained by the kernel function Get_Element(i) references a copy of the i th element if it is not

part of the local collection of the invoking processor object. Otherwise, v references the actual

element. Notice that each processor thread then duplicates the work of computing the dot product

and normalizing its copy of v.

The element function update(v) is invoked in "data parallel" mode on each element in the local

collection that has indexes in the given subrange. In pC++ this is accomplished with an expression

of the form

collection . elementMethod()

which invokes the element method function "in parallel" on each of the elements of the collection.

To invoke the method on a subrange we use a Fortran 90 style triplet

collection [lower : upper : stride] elementMethod()

The parallel operation updateisidenticalto the "DoShared'loop in the Fortran-S program.

};

void MyMatrix::update(ElementType *v){

double temp;

temp = this->dotProduct(v);

•this -= v*temp;

There are two further observations that should be made about this program. First, the use

of Get_Element 0 by each processor object can create a serial section. Each processor object

other than the owner of the i *h element will request a a copy. A more efficient program would

use a coordinated element broadcast, Element_BroadcastO, to make sure each processor object

would get a copy in the smallest amount of time. Second, and more important, is the choice of

data distribution. In our case we have selected a cyclic distribution so that as i increases in the

expression [i + 1 : n - 1].update(v), a majority of processors can participate for as long as possible.

A block distribution would decrease the parallelism much faster.

31

6 Conclusion

In this paper we have examined three different approaches to programming scientific, data-parallel

applications.

Fortran-S plus SVM provides the user with a familiar modeh Fortran 77 plus annotations

to distribute loops over processors. Initial experiments with the KOAN SVM system look very

promising, but we need much more experience with large applications on large new systems before

we can declare success. In the future we expect that more shared virtual memory systems will be

implemented on a variety of massively parallel systems. While the details of each system will vary,

the Fortran-S project demonstrates that the compiler technology exists to make this model work.

High Performance Fortran provides a high level approach to data parallel programming for a

wide variety of architecture. Initial experience has shown that the directives as currently provided

by HPF are adequate for simple scientific codes. However, it is also clear that HPF does not have

enough expressive power to specify the distributions required for other types of codes such as multi-

block and unstructured computations, adaptive computations and multi-disciplinary applications

which require integrating different types of parallel programming paradigms.

Currently there are no existing compilers for HPF; several vendors have promised initial im-

plementations in the near future. However, several research projects have built prototype com-

pilers for HPF-like languages. This includes the Kali compiler [33], the SUPERB project [67] on

which the Vienna Fortran compiler is based, the Fortran D compiler [29] and several other ef-

forts [8, 24, 27, 32, 38, 48, 58, 59, 60] that have contributed to the overall goal of compiling global

name space programs for distributed memory SIMD and MIMD machines.

pC++ is just one example of a number of efforts to add parallelism to C++. While pC++

has been ported to a wide variety of machines including the TMC CM-5, Intel Paragon, BBN

TC2000 and the KSR-1, it does have serious drawbacks. First, it relies on an extension to the

C++ language. While not a large departure from C++, the collection plus processor object model

requires considerable sophistication on the part of the user to use correctly. Also the common

alternative, building class libraries that operate in SPMD parallel execution is very popular and it

does not require extensions to the language. In the future, the success of object parallel extension

to C++ will depend on providing more functionality than Fortran-S or HPF. The feature that will

be important are heterogeneous (polymorphic), dynamic collections and nested data parallelism.

We have not attempted a complete survey of the parallel programming landscape. The three

parallel programming language extensions described here represent only a small fraction of the

approaches currently being investigated. It is clear that this is an area that will continue to

undergo rapid evolution. Different application areas may require different programming paradigms

and some multi-disciplinary problems will need a combination of programming styles.

References

[1] Scalable coherence interface. Technical report, IEEE Standard P1596, 1991.

[2] KSR parallel progranmfing. Technical report, Kendall Square Research Corporation, February

1992.

32

[3] PorterfieldA. Compiler management of program locality. Technical Report, Rice University,

Houston, Texas, January 1988.

[4] Kuck D. Abu-Sufah W. and Lawrie D. On the performance enhancement of paging system

through program analysis and transformations. IEEE Transactions on COmputers, May 1981.

[5] S. Ahuja, N. Carriero, and D. Gelernter. Linda and friends. IEEE Computer, 19:26-34, August

1986.

[6] F. Allen, M. Burke, P. Charles, R. Cytron, and J. Ferrante. An overview of the PTRAN

analysis system for multiprocessing. Research Report RC 13115 (#56866), IBM T. J. Watson

Research Center, Yorktown Heights, NY, September 1987.

[7] J. R. Allen and K. Kennedy. Automatic translation of Fortran programs to vector form. ACM

Transactions on Programming Languages and Systems, 9(4), October 1987.

[8] F. Andr6, J.-L. Pazat, and H. Thomas. PANDORE: A system to manage data distribution.

In International Conference on Supercomputing, pages 380-388, June 1990.

[9] F. Bodin, C. Eisenbeis, W. Jalby, and D. Windheiser. A quantitative algorithm for data

locality optimization. In Code Generation-Concepts, Tools, Techniques. Springer Verlag, 1992.

[10] F. Bodin, J. Erhel, and T. Priol. Parallel sparse matrix vector multiplication using a shared

virtual memory environment. In Proceeeding of the Sixth SIAM Conference on Parallel Pro-

cessing for Scientific Computing, March 1993.

I11] F. Bodin, L. Kervella, and T. Priol. Fortran-s: A fortran interface for shared virtual memory

architectures. In Supercomputing'93, pages 274-283. IEEE, November 1993.

[12] L.M. Censier and P. Feautrier. A new solution to coherence problems in multicache systems.

IEEE Trans. on Computers., C-27(12):1112-1118, Dec 1978.

[13] B. Chapman, P. Mehrotra, J. Van Rosendale, and H. Zima. A software architecture for multi-

disciplinary applications: Integrating task and data parallelism. ICASE Report 94-18, NASA

CR No. 194896, Institute for Computer Applications in Science and Engineering, Hampton,

VA, 1994.

[14] B. Chapman, P. Mehrotra, and H. Zima. Programming in Vienna Fortran. Scientific Pro-

gramming, 1(1):31-50, 1992.

[15] A. Chien and W. Dally. Concurrent aggregates (CA). In Second ACM Sigplan Symposium on

Principles gJ Practice of Parallel Programming. ACM, 1990.

[16] Granston E. D. and Veidenbaum A. V. Integrated hardware/software solution for effective

management of local storage in high-performance systems. Proceedings of the 1991 Interna-

tional Conference on Parallel Processing, 2:83-90, 1991.

[17] J. K. Lee D. Gannon. On using object oriented parallel programming to build distributed

algebraic abstractions. In Conpar-Vap, pages 769-774. Springer Verlag, 1992.

33

[18]

[19]

[2o]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[3o]

S. J. Eggers and T. E. Jeremiassen. Eliminating false sharing. In International Conference on

Parallel Processing, pages 377-380, 1991.

G. Fox, S. Hiranandani, K. Kennedy, C. Koelbel, U. Kremer, C. Tseng, and M. Wu. For-

tran D language specification. Department of Computer Science Rice COMP TR90079, Rice

University, March 1991.

D. Gannon. Libraries and tools for object parallel programming. In Advances in Parallel Com-

puting: (/NRS-NSF Workshop on Environments and Tools For Parallel Scientific Computing,

Saint Hilaire du Touvet, volume 6, pages 231-246. Elsevier Science Publisher, 1993.

Dennis Gannon, William Jalby, and Kyle Gallivan. Strategies for cache and local memory

management by global programnfing transformation. Journal of Parallel and Distributed Com-

puting, 5(5):587-616, October 1988. special issue on languages, compilers, and environments

for parallel programming.

Dennis Gannon, Jenq Kuen Lee, Bruce Shei, Sekhar Sarukaiand Srivinas Narayana, Neelakan-

tan Sundaresan, Daya Atapattu, and Francois Bodin. Sigma ii: A tool kit for building paral-

lelizing compilers and performance analysis systems. Programming Environments for Parallel

Computing, IFIP Transactions A- 11, pages 17-36, 1993.

Gallivan K. Gannon D, Jalby W. Strategies for cache and local memory management by

global program transformation. Proceedings of the International Conference on Supercomput-

ing, Springer Verlag, New York, 1987 and Journal of Parallel and Distributed Computing,

October 1988.

H. M. Gerndt. Automatic Parallelization for Distributed-Memory Multiprocessing Systems.

PhD thesis, University of Bonn, December 1989.

E.D. Granston and H. Wijshoff. Managing pages in shared virtual memory systems: Getting

the compiler into the game. In Proceedings of the International Conference on Supercomputing,

page To appear. ACM, 1993.

M. Gupta and P. Banerjee. Automatic data partitioning on distributed memory multiproces-

sots. University of Illinois at Urbana-ChampaJgn Technical Report CRHC-90-14, Center for

Reliable and High-Performance Computing, Coordinated Science Laboratory, October 1990.

P. Hatcher, A. Lapadula, R. Jones, M. Quinn, and J. Anderson. A production quality C*

compiler for hypercube machines. In 3rd ACM SIGPLAN Symposium on Principles Practice

of Parallel Programming, pages 73-82, April 1991.

High Performance FORTRAN Language Specification. Technical report, Rice University, 1993.

S. Hiranandani, K. Kennedy, and C. Tseng. Compiling Fortran D for MIMD distributed

memory machines. Communications of the ACM, 35(8):66-80, August 1992.

Li J. and Chen M. Generating explicit communication from shared-memory progran references.

Proceedings of Supercomputing, November, 1990.

34

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[4,5]

C.F. Kesselman K.M. (;handy. CC++: A declarative concurrent object oriented programming

notation. In In Researeh Directions in Object Oriented Programming. MIT Press, 1993.

K. Knobe, J. Lukas, and G. Steele, Jr. Data optimization: Allocation of arrays to reduce

communication on SIMD machines. Journal of Parallel and Distributed Computing, 8:102-

118, 1990.

C. Koelbel and P. Mehrotra. (%mpiling global name-space parallel loops for distributed execut

ion. IEEE Transactions on PaT_allel and Distributed Systems, 2(4):440-451, October 1991.

Z. Lahjomri and T. Priol. Koan: a shared virtual memory for the ipsc/2 hypercube. In

CONPA R� VA PP92, September 1992.

J. K. Lee. Object oriented parallel programming paradigms and environments for supercom-

puters. Technical report, Ph.D. Thesis, DCS, Indiana University, June 1992.

J. K. Lee and D. Ga.nnon. Object oriented parallel programming: Experiments and results. In

Supereomputing 91 (Albuquerque, Nov.), pages 273-282. IEEE Computer Society and ACM,

1991.

D. Lenoski, J. Laudon, K. Gharachorloo, A Gupta, and J. Hennessy. The directory-based cache

coherence protocol for the DASH multiprocessor. In Proc. of the 17th Annual Symposium on

Computer Architecture, pages 148-160, New York, May 1990. IEEE.

J. Li and M. Chen. Index domain alignment: Minimizing cost of cross-referencing between

distributed arrays. Technical Report YALEU/DCS/TR-725, Yale University, New Haven, CT,

November 1989.

Kai Li. Shared Virtual Memory on Loosely Coupled Multiprocessors. PhD thesis, Yale Univer-

sity, September 1986.

D. Loveman. High Performance Fortran. IEEE Parallel and Distributed Technology, 1:25-42,

February 1993.

O'Boyle M. Program and Data Transformation for Efficient Execution on Distributed Memory

Arehiteetures. PhD thesis, University of Manchester, 1993.

E. P. Markatos and T.J. Leblanc. Using processo affinity in loop scheduling on shared memory

multiprocessors. In Supereomputing, pages 104-113, 1992.

J. McGraw, S. Skedzielewski, S. Allan, R. Oldenhoeft, J. Glauert, C. Kirkham, W. Noyce,

and R. Thomas. SISAL: Streams and iteration in a single assignment language: Language

reference manual. Report M-146, Lawrence Livermore National Laboratory, March 1985.

K. S. McKindley. Automatic and lnte_uctive Parallelization. PhD thesis, Rice University, 1992.

P. Mehrotra. Programming parallel architectures: The BLAZE family of languages. In Pro-

eeedings of the Third SIAM Conference on Parallel Processing for Scientific Computing, pages

289-299, December 1988.

35

[46] P. Mehrotra and J. Van Rosendale. Programming distributed memory architectures using

Kali. In A. Nicolau, D. Gelernter, T. Gross, and D. Padua, editors, Advances in Languages

and Compilers for Parallel Processing, pages 364-384. Pitman/MIT-Press, 1991.

[47] R. E. Millstein. Control structures in ILLIAC IV Fortran. Communications of the ACM,

16(10):621-627, October 1973.

[48] MIMDizer User's Guide, Version Z02. Pacific Sierra Research Corporation, Placerville, CA.,

1991.

[49]

[5o]

[51]

[52]

F. Bodin P. Beckman D. Gannon S. Yang S. Kesavan A. Malony B. Mohr. Implementing

a parallel C++ runtime system for scalable parallel systems. In Supercomputing 93. IEEE

Computer Society, 1993.

D. Mosberger. Memory consistency models. ACM Operating Systems Review, February 1993.

D. A. Padua, D. J. Kuck, and D. H. Lawrie. High-speed multiprocessors and compilation

techniques. IEEE Transactions on Computers, C-29(9):763-776, September 1980.

T. Priol and Z. Lahjomri. Experiments with shared virtual memory on a ipsc/2 hypercube.

In International Conference on Parallel Processing, pages 145-148, August 1992.

[53] T. Priol and Z. Lahjomri. Trade-offs between shared virtual memory and message-passing on

an ipsc/2 hypercube. Technical Report 1634, INRIA, 1992.

[54] Because Esprit Project. Because Test Programs: BBS.2.5.1 (Matrix Assembly), 1992.

[55] Gao G. R., Olsen R., Sarkar V., and Thekkath R. Collective loop fusion for array contraction.

5th Workshop on Languages and Compilers for Parallel Computing, pages 1-31, 92.

[56] J. Ramanujam and P. Sadayappan. Nested loop tiling for distributed memory machines. In

Proceedings of the The Fifth Distributed Memory Computing Conference, Charleston, SC, April

1990.

[57]

[5_]

[59]

[6o]

M. Raynal and M. Mizuno. How to find his way in the jungle of consistency criteria for

distributed objects memories (or how to escape from minos' labyrinth. In IEEE conference on

Future Trends of D(.',5', 1993.

A. P. Reeves and C. M. Chase. The Paragon programming paradigm and distributed memory

multicomputers. In ('ompilers and Runtime Software for Scalable Multiprocessors, J. Saltz and

P. Mehrotra Editors, Amsterdam, The Netherlands, To appear 1991. Elsevier.

A. Rogers and K. Pingali. Process decomposition through locality of reference. In Conference

on Programming Language Design and Implementation, pages 1-999. ACM SIGPLAN, June

1989.

M. Rosing, R. W. Schnabel, and R. P. Weaver. Expressing complex parallel algorithms in

DINO. In Proceedings of the 4th Conference on Hypercubes, Concurrent Computers, and

Applications, pages 553-560, 1989.

36

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[6s]

J. Torrellas, M. S. Lam, and J. L. Hennessy. Shared data placement optimizations to reduce

multiprocessor cache nfiss rates. In International Conference on Parallel Processing, pages

266-270, August 1990.

Chau-Wen Tseng. An Optimizing Fortran D compiler for MIMD Distributed-Memory Ma-

chines. PhD thesis, Rice University, 1993.

M. E. Wolf and M. Lain. A data locality optimizing algorithm. In Proceedings ACM SIGPLAN

91, June 1991.

Lam M. Wolf M. A data locality optimizing algorithm. A CM Conference on Programming

Language Design and lmplementation, pages 26-28, June 1991.

M. J. Wolfe. More iteration space tiling. In Supercomputing '89, November 1989.

J. Wu, J. Saltz, S. Hiranandanu, and H. Berryman. Runtime compilation methods for multi-

computers. In Proceedings of the 1991 International Conference on Parallel Processing, vol-

ume II, pages 26-30, 1991.

H. Zima, H. Bast, and M. Gerndt. Superb: A tool for semi-automatic MIMD/SIMD paral-

lelization. Parallel Computing, 6:1-18, 1986.

H. Zima, P. Brezany, B. Chapman, P. Mehrotra, and A. Schwald. Vienna Fortran - a language

specification. Internal Report 21, ICASE, Hampton, VA, March 1992.

37

I FormApprovedREPORT DOCUMENTATION PAGE OMB No 0704-0188

Pubcreportngburdenforth sco ectonof nformatonisestimatedtoaverage[hourperresponseincludingthetimeforreviewinginstructions,searchingexistingdatasources,
gatherngandmantannilthedataneededandcompletingandreviewingthecollectionofinformation.Sendcommentsregardingthisburdenestimateoranyotheraspectofthis
collectionofinformation,includingsuggestionsforreducingthisburden,toWashingtonHeadquartersServices.DirectorateforInformationOperationsandReports.[2]5 Jefferson
DavisHighway,Suite1204.Arlington,_/A22202-4302.andto theOfficeofManagementandBudget,PaperworkReductionProject(0704-0188).Washington.OC20503

I. AGENCY USE ONLY(Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
June 1994 Contractor Report

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

DIRECTIONS IN PARALLEL PROGRAMMING: HPF, SHARED

VIRTUAL MEMORY AND OBJECT PARALLELISM IN pC++

6. AUTHOR(S)

Francois Bodin, Thierry Priol,

Piyush Mehrotra and Dennis Gannon

7. PERFORMING ORGANIZATION NAME(S) AND ADORESS(ES)

Institute for Computer Applications in Science

and Engineering

Mail Stop 132C, NASA Langley Research Center

Hampton, VA 23681-0001

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

National Aeronautics and Space Administration

Langley Research Center

Hampton, VA 23681-0001

C NAS1-19480
WU 505-90-52-01

8. PERFORMING ORGANIZATION
REPORT NUMBER

IC'ASE Report No. 94-54

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

NASA CR-194943

ICASE Report No. 94-54

11. SUPPLEMENTARY NOTES

Langley Technical Monitor: Michael F. Card

Final Report
To Appear in Proceedings of Summer Inst. on Parallel Comp. Architectures, Lang. and Algorithms, IEEE Press

12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Unclassified-Unlimited

Subject Category 61

13. ABSTRACT (Maximum 200 words)
Fortran and C++ are the dominant programming languages used in scientific computation. Consequently, extensions

to these languages are the most popular for programming massively parMlel computers. We discuss two such

approaches to parallel Fortran and one approach to C++. The High Performance Fortran Forum has designed HPF

with the intent of supporting data parallelism on Fortran 90 applications. HPF works by asking the user to help the

compiler distribute and align the data structures with the distributed memory modules in the system. Fortran-S

takes a different approach in which the data distribution is managed by the operating system and the user provides
annotations to indicate parallel control regions. In the case of C++, we look at pC++ which is based on a concurrent

aggregate parallel model.

14. SUBJECT TERMS
Data parallel programming, high performance Fortran, Shared virtual memory, object

parallelism

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION
OF REPORT OF THIS PAGE OF ABSTRACT
Unclassified Unclassified

_ISN 7540-01-280-5S00

U.S. GOVERNMENT PlUN'nNG OFFICE: 1994 - S2JI-O(/Z3OI4

15. NUMBER OF PAGES

39

16. PRICE CODE
A03

20. LIMITATION
OF ABSTRACT

Standard Form298(Rev. 2-89)
Prescribed byANSI Std. Z39-18

298-102

